
International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

Advancement in Guard Zone Computation
through Detection and Exclusion of the

Overlapped Regions
Ranjan Mehera, Piyali Datta, Arpan Chakraborty, and Rajat Kumar Pal

Abstract— The guard zone computation problem claims utmost importance in VLSI layout design, where the circuit components (or the

functional units/modules or groups/blocks of different sub-circuits) that may be viewed as a set of polygonal regions on a two-dimensional

plane, are not supposed to be placed much closer to each other in order to avoid electrical (parasitic) effects among them. Each (group of)

circuit component(s) Ci is associated with a parameter i such that a minimum clearance zone of width i is to be maintained around Ci.

Beyond this, it has huge significance in the field of robotic motion planning, geographical information system, automatic monitoring of metal

cutting tools, and design of embedded systems. If the guard zonal regions overlap, we have to remove the overlapped regions in order to

compute the resultant outer guard zone (sometimes inner guard zones are also an issue to be considered). In this paper, we have

developed an algorithm to compute the guard zone of a simple polygon as well as to exclude the overlapped regions among the guard

zonal segments (if any) in O(n log n) time, where n is the number of vertices of the given simple polygon.

Index Terms— Simple polygon, Safety zone, Notch, Convex hull, False hull edge, Convolution, Minkowski sum.

——————————  ——————————

1 INTRODUCTION

D guard zone computation problem undoubtedly occupies
a majority of interest in the field of VLSI physical design
automation and design of embedded systems, as resizing is

an important problem in VLSI layout design as well as in
embedded system design. If two or more subcircuits are close
enough, it may result in parasitic effect which disrupts the
performance of the circuit. Thus, with respect to resizing
problems in VLSI, this is the motivation of defining the safety
zone of a polygon [6]. The width of the safety zone depends
on the polygon, i.e. the type of the circuit present therein and
the free space required to perform all the tasks safely. In this
context, it is also essential to detect overlapping (if any)
among the guard zonal regions and accordingly remove them
to obtain resultant guard zone. Through this procedure we
may also find a hole (if any) in the guard zone and some times
those holes may be used to place a subcircuit in order to utilize
the chip area more densely and efficiently. In this paper we
develop an algorithm to compute guard zone of a 2D simple
polygon including the detection and exclusion of the
overlapped regions (if any).

To solve the guard zone computation problem, one of the
reputed methods is Minkowski sum [3]; that can be used to
draw a parallel line with respect to a given polygonal edge.
Essentially, Minkowski sum between a line and a point with
same x- and y-coordinates gives a line parallel to the given

one. But the question arises is whether the parallel line is
inside or outside the polygon. Here the definition of
Minkowski sum [3] can be extended as below.

If A and B are subsets of Rn, and   R, then A+B = {x+y | x
 A, y  B}, A–B = {x–y | x  A, y  B}, and A {x | x  A}.

Note that A+A does not equal 2A, and A–A does not equal
‘zero’ in any sense.

Another method may be used to compute guard zone of a
polygon. The convolution [1] is used to solve the guard zone
problem. The convolution between a polygon and a circle of
radius r gives us the desired solution. But the circles need to
be drawn in every possible points of the polygon and
consequently the time complexity of the algorithm increases.
Minkowski sum and convolution theories find their vast
applications in Mathematics, Computational geometry,
resizing of VLSI circuit components and/or recently in
embedded systems, and in many problems in many other
subjects.

2 LITERATURE SURVEY

In the context of guard zone computation, several different
algorithms have been proposed so far. The most discussed tool
for guard zone computation is the Minkowski Sum [4]. Apart
from Minkowski sum, convolution can also be used as a tool
for guard zone computation. Essentially, Minkowski sum
between a line (as polygonal segment) and a point
(perpendicularly at a distance r apart) with the same x- and y-
coordinates gives a line parallel to the given one. But the
question arises is whether the parallel line is inside or outside
the polygon. We have already defined Minkowski sum in the
introduction of this paper.

The convolution between a polygon and a circle of radius r
may give us the desired solution of a guard zone. But the
circles need to be drawn in every possible point of the polygon
and thus the time complexity of the algorithm increases. The

2

————————————————

Ranjan Mehera, Piyali Datta, Arpan Chakraborty, and Rajat
Kumar Pal are from Department of Computer Science and
Engineering, University of Calcutta

Acharya Prafulla Chandra Roy Siksha Prangan, JD – 2, Sector –
III, Saltlake City, Kolkata – 700 098, West Bengal, India

ranjan.mehera@gmail.com, piyalidatta150888@gmail.com,
arpanc250506@gmail.com, pal.rajatk@gmail.com

280

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 6, Issue 5, May-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

complexity of computing Minkowski sum of two arbitrary
simple polygons P and Q is O(m2n2) [4], where m and n are the
number of vertices of these two polygons. In particular, if one
of the two polygons is convex, the complexity of Minkowski
sum reduces to O(mn). In [6], numerous results are proposed
on the Minkowski sum problem when one of the polygons is
monotone.

In this context, a linear time algorithm is devised for
finding the boundary of minimum area guard zone of an
arbitrarily shaped simple polygon in [9]. This algorithm uses
the idea of Chazelle’s linear time triangulation algorithm and
requires space complexity of O(n) as well [2], where n is the
number of vertices of the polygon. After having the
triangulation step, this algorithm uses only dynamic linear
and binary tree data structures. Again, a time-optimal
sequential algorithm for computing a boundary of guard zone
has been developed in [5-7] that uses simple analytical and
coordinate geometric concepts. The algorithm can easily be
modified to compute the regions of width r outside the
polygon as guard zone, and also inside the polygon.

3 PROBLEM FORMULATION

In this section, we formulate and develop a comprehensive
algorithm to compute guard zone of a simple polygon while
detecting and excluding the overlapped regions (if any) of the
guard zone. A simple polygon may contain both convex and
concave vertices in it. We define these vertices as follows: A
vertex v of a polygon P is defined as convex (concave), if the
angle between its associated edges inside the polygon, i.e. the
internal angle at vertex v, is less than or equal to (greater than)
180º. In Fig. 1, angles at vertices v4, v5, and v6 are concave
whereas angles at vertices v1, v2, v3, v7, v8, and v9 are convex. To
know whether an angle , inside the polygon, is either convex
or concave at vertex v, we do a constant time computation of
determining the value (of ) at vertex v. For a given set of
three or more connected vertices that form a simple polygon,
the orientation of the resulting polygon is directly related to
the sign of the angle at any vertex of the convex hull of the
polygon. For example, to determine the type of angle formed
between edges a = (XA, XB) and b = (XB, XC) with coordinates
XA (x1, y1), XB (x2, y2), and XC (x3, y3), the following equation is
being used that takes constant time for finding out the angle
whether it is convex or concave:

det(O) = (XBXA)(YCYA)  (XCXA)(YBYA).

Fig. 1: A notch is formed inside (or below) the false hull edge formed by
vertices v2 and v8, and a guard zone is obtained for this notch as shown by
dotted lines and circular arcs outside of the polygon.

Fig. 2: (a) Different probable overlapping of guard zone of two convex
regions. (b) Probable overlapping of guard zone of one convex region with
a straight line segment. (c) A polygon consisting of a number of convex
(e.g., B, C, D, and F) and concave (e.g., A, E, and G) vertices whose
guard zonal regions are probable to overlap.

Now, if all the n external angles of the polygon are convex,
the guard zone is computed only with the help of n straight
line segments and n circular arcs in linear time [6, 7]. Problems
may arise in computing guard zone for the portions of
polygon P with concave external angles. In this context, we
introduce the concept of notch. A notch is a polygonal region
outside a polygon that is starting and terminating between
two consecutive convex vertices of the polygon that are not
adjacent. As our objective is to compute the intersection points
and exclude the overlapped regions (if any), we first compute
the guard zone G (without excluding overlapped portions) of
the given simple polygon P in linear time [6, 7]. The difficulty
arises while excluding the part(s) of G that overlap(s).

As a guard zone consists of only line segments and circular
arcs, intersection may occur between two line segments, one
line segment and a circular arc or two circular arcs. In Figs.
2(a), 2(b) and 2(c), different kinds of probable overlapping
sections have been depicted. To find out all the intersection
points and exclude the overlapped region(s) (in order to get
the desired guard zone only, including holes, if any, as parts
of G), we may execute an O(n2) algorithm for each pair of such
segments, among all straight line segments and circular arcs
resulting and ensuring inefficiency with respect to cost. In the
next section, we present a number of algorithms which solves
the guard zone computation problem bounding its cost in time
to O(n log n).

4 ALGORITHM DEVELOPMENT

To detect and exclude the overlapped guard zonal regions we
use the line sweep algorithm among the guard zonal segments
that in turn may reduce the overall complexity of guard zone
computation algorithm to O(n log n), instead of O(n2) [6]. As
the guard zone is a set of line segments and circular arcs and
line sweep algorithm can only be applied on a set of line
segments, we cannot solve our problem directly through line
sweep algorithm. Hence, our incline to modify the guard zone
in such a way that we may use line sweep algorithm, which is
an efficient tool for intersection checking.

The computation procedure will be trickier, if we somehow
detect the probable intersection region or the components
which are most prone to overlap and afterwards we detect the
final intersecting guard zonal component pair(s). Also it may

v2

v3

 v4

v5

v6

v7

v8

v9

v1

Inside of the polygon

(c)

Inside of
the

polygon

(a)

Probable intersection

region

(b)

E

D

B

C
F

A

281

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 6, Issue 5, May-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

happen that originally there were no intersections but the
algorithm reports the intersection points and works only with
those intersection information and finally reports the
computed guard zone. The algorithm works in two phases. In
Phase I, it detects the prone guard zonal components to be
intersected and in Phase II, it computes the guard zone
eliminating overlapped portions, if any.

The main objective of this algorithm is to reduce the search
space so that there will be a speed up in the application of the
line sweep algorithm. We notice that for each of the circular
arcs, its two tangents, which are actually the line segments of
the guard zone attached to that circular arc, can be extended.
Thus, they meet at a point. If we apply this at each such
circular arc we get s number of points for s number of circular
arcs. As a result the guard zone will become a polygon which
is not necessarily a simple one. We call it the extended or
overestimated guard zone. By converting a guard zone into an
extended or overestimated guard zone we now do not have to
consider the circular arc portions for repetitive bisection.

For an example, the vertex p of the overestimated polygon
as shown in Fig. 3, which is formed by extending two
neighbouring line segments of the circular guard zonal region
of the convex vertex v of the original polygon. Here the
circular arc vv is the guard zonal region of the convex vertex
v. Now the neighbours of this circular arc are uv and vw.
They are extended and meet at p, which is considered to be a
convex vertex of the overestimated polygon. Thus, all the
circular arcs of the guard zone are now replaced by
corresponding convex vertices in the extended polygon. Now
if the extended guard zone, which is actually a polygon,
becomes also a simple polygon it means that there is no
intersection among the guard zonal components and there is
no need of Phase II of the algorithm.

Here the line sweep algorithm is applied where the input is
a set of line segments (original guard zonal line segments and
the derived line segments replacing the circular arcs)
associated with their starting and ending coordinates as event
points. The starting point, ending point, and point of
intersection (if any) are the three types of event points. As
usual all the event points are sorted and the sweep line is
traversed through the sorted list of event points. At each event
point, insertion (at start event point), deletion (at end event
point), and update (at intersection point) of neighbouring
operations are performed during the sweep line traversal.
Here the data structures used are of the highest importance to
accomplish the task in O(n log n) time.

This algorithm maintains two binary search trees, one for
storing the event points and another for the line segments to
keep track of their neighbouring information. All the three
operations are performed on the query tree. As an intersection
occurs only between the neighbours, this data structure
reduces the search space for intersection checking to the set of
neighbours of a line segment. Furthermore, it is proved that
line sweep algorithm reports all the intersection points. After
getting all these intersection points, we traverse the original
guard zone and depending on the intersection points we
exclude the intersected or overlapped region(s), and report the
outer and inner guard zone [5], accordingly.

Fig. 3: Extending the guard zonal line segments (uv and wv) associated
with a circular arc (vv) to obtain the overestimated guard zonal region
that meets at p.

When applying the line sweep algorithm to a polygon, we
need to remember that each pair of consecutive edges share
one event point (starting or ending) and thus the algorithm
needs a little bit modification as it takes the set of line
segments those do not share their start or end point. At the
beginning of the algorithm, the sweep line is at the maximum
or minimum event point; again that point is the starting point
of two line segments and hence arises the ambiguity in
selecting the root of the query tree as both the line segments
are claimers to be the root. We remove this confusion in the
following way; let us consider L1 and L2 are such line
segments competing to be the root.

First we compare the end points of the line segments. If
their y-coordinate values are different, the line segment
having larger y-coordinate value (say L1) is selected as the
root and another line segment (i.e. L2) has been selected as its
left (right) child if the x-coordinate value of L2 is less (greater)
than that of L1. On the other hand, if their y-coordinate values
are same, the line segment having smaller y-coordinate value
(say L1) is selected as the root and another line segment (i.e.
L2) has been selected as its right child.

Another modification of line sweep algorithm lies in the
fact that we have to deal with a closed polygon and the query
tree is empty only at the starting and at the termination of the
algorithm, whereas in the traditional line sweep algorithm to
have an empty query tree is not a termination condition,
because it may happen that at the end point of a line segment
where there is no other line segment whose start point is
above that very point and the end point is below it. Except
these two above cited modifications, the algorithm proceeds in
the way of traditional line sweep algorithm identifying all the
intersection points, if exists.

Now in Phase II, the algorithm deals with the original
guard zonal regions, not with the extended guard zones and
with the regions which are detected to be the probable
intersection regions by the first phase of the algorithm. As has
been discussed earlier, these regions are subdivided into line
segments (if there is any circular arc in these parts of the
polygon) and the line sweep algorithm is further applied on
these line segments only. At the end of the second phase, we
get the original intersections and depending on these points,

p

Inside of the polygon

v

v

w

 w

u

u

r

r

v

282

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 6, Issue 5, May-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

the algorithm reports the outer guard zone as well as the inner
guard zonal loop, if any. Two phases of the algorithm will be
discussed next with the help of an example.

Let us consider a simple polygon S whose vertices are
stored in anticlockwise manner as a, b, c, d, e, f, g, h, i, j, k, l,
where a, b, c, d, e, f, g, k are convex and h, i, j are concave
vertices (Fig. 4(a)). After obtaining the guard zone of this
polygon, the algorithm is applied to detect and exclude the
overlapping portions.

4.1 Phase I of the Algorithm

As the pair of neighbouring line segments of each circular arc
(guard zone of a convex vertex) is extended, that meet at a
point which is again a convex vertex of the overestimated
polygon. Now let us consider a overestimated polygon X as
shown in Fig. 5(b), whose edges are labeled as AB (2), BC (3),
CD (4), DE (5), EF (6), FG (7), GH (8), HI (9), IJ (10), JK (11), KL
(12), LA (1).

After sorting all the event points in the descending y-value,
we get the event list as L, E, A, F, K, J, D, G, H, I, B, C. At the
beginning, this array only contains all the start and end points
in their sorted sequence (according to their y-coordinates), but
subsequently checking of intersection introduces more event
points as the intersection points are also considered as the
event points. All the event points are handled by the query
tree (T).

Now the sweep line is adjusted, parallel to x-axis at the
maximum y-coordinate, i.e. at L. It is the starting point of two
line segments 1 and 12. The x-coordinate of the end of 1 is less
than the x-coordinate of the end of 12. So, in T, 1 is left
neighbour of 12. Accordingly, both the trees are shown in Figs.
5(a) and 5(b) conveying this relationship. Though at a glance it
seems to be ambiguous to choose the tree structure between
these two, this does not introduce any indefiniteness in our
algorithm. We can always choose the root by comparing the y-
coordinates of the two line segments whose start points are
same. The line segment, whose end point is of greater y-
coordinate between the two, is selected as the root. Now the
other line segment is inserted into the tree as right child or left
child of the root depending on the neighbouring relationship
of this segment with the root. Here 1 will be the root node and
12 will be its right child as the y-coordinate of A which is the
end point of segment 1, is higher than that of K, i.e. the y-
coordinate of A is greater than that of K, which is the end
point of segment 12. So the tree of Fig. 5(b) is chosen. Now 1
and 12 are consecutive polygonal edges, there is no need of
checking intersection between them. L is deleted from the
event list. Hence, the content of the event queue becomes E, A,
F, K, J, D, G, H, I, B, C.

Next event point is E. It is the starting point of 6 and 5;
hence, these two event points are to be inserted into the query
tree. As E is a point with higher x-coordinate value than L, 6
and 5 are inserted in the right subtree of 12. Here we compare
the end points of 6 and 5 to decide which the direct neighbour
of 12 is. As the end point of 6 possesses lower x-coordinate
than that of the end point of 5, 6 is inserted first as the right
child of 12 as shown in Fig. 5(c). As we like to make the tree
height balanced always, rotations are applied as needed and

obtain the tree as shown in Fig. 5(d). Now, checking for
intersections between 6 and 12 is performed. It results in an
intersection point Q. The point is inserted in the intersection
list with information Q (6,12) maintaining its order. Again, the
intersection point Q is inserted into the event queue
maintaining proper y-value sequence. Now, 5 becomes the
right neighbour of 6. Accordingly, the tree is shown in Fig.
5(e). E is deleted from the event queue and the content of
event queue becomes A, Q, F, K, J, D, G, H, I, B, C.

Fig. 4: (a) A simple (dotted) polygon P. (b) The extended guard zone X of
the polygon P (X is also a polygon drawn by solid lines).

Now the sweep line moves towards the next event point A,
which is the end point of 1 and start point of 2. As 1 is a leaf
node in T and the remaining tree does not become height
imbalanced even after deleting node A, it is deleted without
any additional modification in the tree. As 1 has been deleted
and A is of less x-coordinate than the point at which 12 cuts
the sweep line, 2 is inserted being the left neighbour of 12.
Accordingly, the tree is shown in Fig. 5(f). A is deleted from
the event list. The event list is now Q, F, K, J, D, G, H, I, B, C.
Now the event point Q is to be handled. As it is an intersection
point, the neighbouring information are updated in T. this is
performed by interchanging 12 and 6. Again their set of
neighbours has also been interchanged; the tree is shown in
Fig. 5(g). Q is deleted from the event list. The event list is now
F, K, J, D, G, H, I, B, C. The next event pont is F, which is the
end point of 6 as well as the start point of 7. Now, 6 is deleted
and 7 is inserted at the place of 6 in the query tree. Hence, 7 is
the neighbour of 2 and 12 and intersection checking is
performed among those. As no intersection is reported the

L

D

C 3

A

B

G

K
F

E

J

H

I

1

2

4
8

9

6

5

10 7

12

11

(b)

(a)

P

P

X

d

l

a

b c

g

f

k

e

j

h

i

283

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 6, Issue 5, May-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

intersection list remains the same and F is deleted from the
event queue. The resulting query tree structure has been
shown in Fig. 5(h). Thus, during the algorithm, the sweep line
traverses all the points in event list. In the meantime it handles
the query tree T. In Fig. 6, all the intermediate trees are shown.
As we are applying line sweep algorithm on a bounded
region, i.e. a polygon, the query cannot be empty until all the
event points are accessed. Hence, the algorithm of Phase I is
over when the query tree becomes empty. The status of event
queue and the intersection list at each event point have been
shown through Table I.

Fig. 5: (a) 1 and 12 have been inserted, 12 being right child of 1. (b) 1 and
12 have been inserted, 12 being left child of 1. (c) 6 has been inserted
being right child of 12 and the tree gets imbalanced. (d) The unbalanced
tree in (c) is made height balanced. (e) 5 has been inserted as the right
child of 6. (f) 1 is deleted and 2 is inserted. (g) The positions of 12 and 6
have been interchanged. (h) 6 is deleted and 7 is inserted. (i) 12 is deleted
and 11 is inserted. (j) The positions of 7 and 11 have been interchanged.
(j) 11 is deleted and 10 is inserted. (l) The positions of 7 and 10 have been
interchanged. (m) 5 is deleted and 4 is inserted. (n) 7 is deleted and 8 is
inserted. (o) The positions of 8 and 10 have been interchanged. (p) 8 is
deleted and 9 is inserted. (q) 9 and 10 are deleted resulting 4 to be the
root. (r) 9 and 10 are deleted (from (p)) resulting 2 to be the root and this
tree is selected as the x-coordinate of the end point of 2 is less than that of
4, though both of them have same y-coordinates. (s) 2 is deleted and 3 is
inserted at the position of 2.

4.2 Phase II of the Algorithm

At the end of Phase I, we have obtained all the probable
intersection points for the overestimated guard zonal regions.
Each intersection point can be on the actual guard zonal
component or on the extended portion of the guard zonal line
segments. So, an intersection point thus obtained may be
original or fake depending on whether it is on the original
guard zonal segment (or not), and thus, a further checking is
required to identify the real ones.

Now, there are three types of intersections: (a) circular arc-
circular arc, (b) line segment-circular arc, and (c) line segment-
line segment. We denote each intersection point as a triple
intersection point, (two ends of one of the intersecting
components), (two ends of the other intersecting component).
Thus, one intersecting pair resulted in the first phase identifies
a set of consecutive original guard zonal segments, i.e. arc-
line segment-arc, or arc-line segment, or line segment
depending upon the guard zonal segment that has been
extended in Phase I. Irrespective of the cases occurred, we
have to check a constant number of guard zonal segments
whether there is any intersection. Now, during the guard zone
computation phase for each of the polygonal edge and
vertices, we get the equation of both the line segment and
circular arc along with their end points. Hence, the checking
between any two of these segments is a constant time
operation using simple coordinate geometry. For an example,
if we want to check whether a line segment and a circular arc
are intersecting, we only need to know the (coordinate)
equations of the line segment and the circle. Subsequently, if
there is any intersection point, we have to check whether the
point is on the circular arc or on the remaining portion of the
circle [5].

In our example, for the intersection point Y, as shown in
Fig. 6, the guard zonal information is Y, arc(G1, G2), (I, J).
Hence, the guard zonal component list is updated by
replacing arc(G1, G2) by arc(G1, Y), arc(Y, G2) and IJ by IY,
YJ. The next intersection point is X (in Fig. 7), which is
between 8 and 10 (in Fig. 4(b)). 8 joins one convex point G and
one concave point H. So we consider the circular arc
corresponding to G and the line segment joining the circular
arc and the concave point H. Again 10 joins two concave
points J and I; so we consider only the line segment joining the
concave points J and I. Thus, we have one circular arc and two
line segments for a probable intersecting region.

Fig. 6: Original guard zone of a simple polygon consisting of line segments
and circular arcs.

After the second phase, we find X as X, (G2, H), (I, J). Now
at the time of updating the guard zonal component list, as IJ
has already been updated, we need to check whether the point
X lies on IY or YJ. Accordingly, the guard zonal information
regarding that component is updated in the list. Here for point

(f)

 6

55

112

22

(g) (h)

112

55

77

22

(i)

111

55

77

22

(o)

88

44

110

22

(p) (r) (s) (q)

(j)

77

55

111

22

(k)

77

55

110

22

(l)

110

55

77

22

(m)

110

44

77

22

99

44

110

22

44

22

22

44

33

44

112

55

66

22

(c) (a) (b) (d)

11

112 6

112

11

(e)

 6

 5

112

21

11

112

6

14

112

11

(n)

110

88

22

284

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 6, Issue 5, May-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

X we update IY as IX and XY, as point X is on IY.

TABLE I

THE TABLE OF EVENT POINTS, THE CONTENTS OF THE EVENT QUEUE, AND INTERSECTION LIST DURING THE EXECUTION OF THE ALGORITHM

FOR THE EXAMPLE POLYGON SHOWN IN FIG. 4

Event

points

Starting of

line

segment(s)

Ending of

line

segment(s)

Intersecting

line

segments

Event Queue Intersection List

L 1, 12 - - E, A, F, K, J, D, G, H, I, B, C -

E 5, 6 - - A, Q, F, K, J, D, G, H, I, B, C Q (6,12)

A 2 1 - Q, F, K, J, D, G, H, I, B, C Q (6,12)

Q - - 6, 12 F, K, J, D, G, H, I, B, C Q (6,12)

F 7 6 - K, J, D, G, H, I, B, C Q (6,12)

K 11 12 - P, J, D, G, H, I, B, C Q (6,12), P (7,11)

P - - 7, 11 J, D, G, H, I, B, C Q (6,12), P (7,11)

J 10 11 - D, R, G, H, I, B, C Q (6,12), P (7,11), R (7,10)

D 6 5 - R, G, H, I, B, C Q (6,12), P (7,11), R (7,10)

R - - 7, 10 G, H, I, B, C Q (6,12), P (7,11), R (7,10)

G 8 7 - S, H, I, B, C Q (6,12), P (7,11), R (7,10), S (7,8)

S - - 7, 8 H, I, B, C Q (6,12), P (7,11), R (7,10), S (7,8)

H 9 8 - I, B, C Q (6,12), P (7,11), R (7,10), S (7,8)

I - 10, 9 - B, C Q (6,12), P (7,11), R (7,10), S (7,8)

B 3 2 - C Q (6,12), P (7,11), R (7,10), S (7,8)

C - 3, 4 - - Q (6,12), P (7,11), R (7,10), S (7,8)

At the end of Phase II, when all the guard zonal

information is obtained, the algorithm reports the computed
guard zone excluding the overlapped portions. Thus, the
output should be in the form of list of guard zonal line
segments and guard zonal circular segments after eliminating
intersecting region(s). Now, here is an important observation;
inside the notch area, the overlapping among the components
may create two types of guard zonal loops: outer guard zone
and inner guard zone. For the former case, it is a free space
and not a part of the polygon. Hence, the detection of inner
guard zonal loop is of utmost importance for further
utilization of this free space, in terms of placement of a new
subcircuit. However, both the loops are free from overlapping.
For the example given, as we traverse the guard zonal
components in counterclockwise manner, we can have each
component in their consecutive order. According to the list, as
we traverse the guard zone, we encounter the intersection
points one after another, as it appears in the list. Once we
encounter an intersection point, we change our path and
continue the traversal along the other line segment in
anticlockwise manner. Thus, this is how when we reach at the
starting point of the traversal, our job is done. This process
consumes O(n) time if the number of vertices in the polygon is

n. As per our example, the said traversal results the outer
guard zone as follows: arc(A1, A2), A2B1, arc(B1, B2), B2C1,
arc(C1, C2), C2D1, arc(D1, D2), D2E1, arc(E1, E2), E2F1, arc(F1,
F2), F2Y, YJ, JK1, arc(K1, K2), K2L1, arc(L1, L2), L2A1.

In this case, when we arrive at Y after traversing segment
F2Y, we check for the line segment that intersects at Y other
than F1G2. Here it is JI and the point from Y we find J in the
anticlockwise direction. Thus, we move to J and report the
segment YJ as the next traversed line segment in the desired
guard zone excluding the overlapped regions. Sometimes
there may be an overlapping at the notch region and there is a
sufficient space in that notch to place a subcircuit to utilize the
area more efficiently. In this case, if we follow the above
procedure we compromise the possibility to find the region
which is in the shape of a loop inside the notch. In that case we
follow the procedure discussed below.

While traversing the guard zone, when we are at one of the
intersection points, we traverse in anticlockwise direction
enlisting the line segments and circular arc segments
including the intersection points as well. Thus, the list starting
from one intersection point and circle back to the same point
needs to be eliminated from the guard zone (except the points
of intersection) as it includes the inner guard zone along with

285

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 6, Issue 5, May-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

the intersection region. Then we get the resultant list for the
guard zone. The inner guard zone can also be specified by
sublist of the list mentioned above. If there is one such cycle
starting from one intersection point and ending at the same
point without having any other intersection point within it, it
is an inner guard zone.

From our example polygon in Fig. 5, we have two
intersection triples Y, (arc(F1, F2), arc(G1, G2)), (I, J) and X,
(arc(G1, G2), H), (I, J). Starting from arc(F1, F2) we get the list:
arc(F1, F2), F2Y, YG1, arc(G1, G2), G2X, XH, HI, IX, XY, and YJ
as it covers all the end points of this triple and it is updated in
the original guard zonal list. But here is no inner guard zone
starting from Y and ending at Y as in this cycle there is another
intersection point X. Before updating the original list we
remove the sublist starting from Y and ending at the line
segment joining two intersection points. Thus here we remove
this portion: YG1, arc(G1, G2), G2X, XH, HI, IX, XY. Starting
from arc(G1, G2) we get the list: arc(G1, G2), G2X, XH, HI, IX,
XY, YJ. So the inner guard zone is XH, HI, IX, and the outer
guard zone is: arc(A1, A2), A2B1, arc(B1, B2), B2C1, arc(C1,
C2), C2D1, arc(D1, D2), D2E1, arc(E1, E2), E2F1, arc(F1, F2),
F2Y, YJ, JK1, arc(K1, K2), K2L1, arc(L1, L2), L2A1.

Thus, the list starting from one intersection point and
ending at the same point is to be eliminated from the guard
zone as it includes the inner guard zone and intersection
region. The inner guard zone can also be specified by sublist
of the above said list. If there is one such cycle starting from
one intersection point and ending at the same point without
having any other intersection point in between, it is an inner
guard zone.

 After finding the list of intersecting line segments and arcs,
the information is updated in the original guard zonal list.
There is no inner guard zone starting from one intersection
point (Y) and returning back to that very intersection point
(Y), if in this cycle there is no other intersection point X, where
X  Y; otherwise, there is an inner guard zone that needs to be
reported separately. If there is any inner guard zone, before
updating the original list the sublist starting from Y and
ending at the line segment joining two intersection points X
and Y is removed. The remaining list is reported as the outer
guard zone. Thus, we obtain the outer guard zone as well as
the holes in the guard zone (if any) in O(n log n) time.

TABLE II

A STUDY ON COMPARISON OF DETECTING INTERSECTION(S)

Issues

considered

Naive

Algorithm
Two-Phase Algorithm

Segments to

be

considered

for checking

intersections

12 (line

segments)

+ 9

(circular

arcs) = 21

Phase I: 12 (overestimated guard

zonal line segments)

Phase II: For four intersection

points found in the Phase I, there

are (3+3), (3+2), (3+1), and (2+1)

guard zonal segments for original

intersection checking.

Computation

required

(12+9)2 =

441

Phase I: 12 log212

Phase II: (3×3) + (3×2) + (3×1) +

(2×1) = 20

Time

complexity
O(n2)

O(12 (log2 12) + cI)

= O(n log n + cI), as c is a

constant and I is the number of

intersection points detected in

Phase I.

5 EXPERIMENTAL RESULTS

In this section, we cite a relative study based on the polygon
shown in Fig. 4(b), in terms of time and detecting
intersections, between the naive algorithm where the
intersections are identified by checking each pair of segments
and our proposed two-phase method. Here we denote the
number of intersections resulted in the first phase as I and for
each probable region of intersection, we have to consider a
constant number of guard zonal segments (linear or circular)
for original intersection checking, each of which takes constant
time using simple coordinate geometry. Note that the
assumed polygon in Fig. 4(b) containing 12 edges and 12
vertices out of which nine vertices are convex and the
comparison has been shown in Table II.

6 COMPLEXITY ANALYSIS

If the number of edges in the original polygon is n, then the
number of edges by removing each of the circular arcs, i.e. to
derive the extended polygon, is also O(n) as we require a
constant number of operations for each of the convex vertices.
The next step is to apply the line sweep algorithm taking the
set of all line segments, original as well as derived segments
after preprocessing. The algorithm starts by creating an event
queue by sorting the starting and ending points of the line
segments, which takes O(n log n) time using any standard
sorting algorithm. Initializing the query tree takes constant
time. The query tree handling consists of three operations:
insertion, deletion, and interchange of node positions, each of
such operations takes O(log n) time.

Now m  n+I, where I is the number of intersection points
obtained in the first phase of the algorithm, i.e. these are the
probable intersection points. Hence, the complexity of the line
sweep algorithm is O(m log n) [8]. In the second phase, we
deal with the segments of the original guard zone that are
associated with the intersection points in the first phase. In
each of the cases, we have to consider only a constant number
of guard zonal segments associated with each line segment
pair, which have been reported to be intersecting in the Phase
I of the algorithm. Thus, total number of checking required in
the second phase is cI, where c is a constant bounded within 9.
The intersection points obtained in this time are the actual
ones. Hence, the time complexity of the algorithm in two
phases is O(m log n + cI), i.e. the devised algorithm is output
sensitive.

7 APPLICATIONS

Now in brief we like to point out the importance and
motivation of the problem as follows. Suppose, there are two
(approximated) guard zones G1 and G2 that are computed for
two 2D simple polygons P1 and P2, respectively, those are not
shown in Fig. 7(a). Moreover, these two polygons are to be
placed adjacent in realizing a larger VLSI circuit, where the

286

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 6, Issue 5, May-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

two polygons of guard zones must not overlap. Thus, there
might have several 2D arrangement (or placement) of these
two guard zones as shown in Figs. 7(b)-(e), out of which the
placement in Fig. 7(d) takes the most reduced space (or area).

Fig.7. (a) Two (approximated) guard zones G1 and G2 are assumed as
computed for two 2D simple polygons P1 and P2 (that are not shown in
these figures), respectively. (b)-(e) Different 2D arrangement (or
placement) of these two guard zones out of which (d) consumes the least
amount of 2D space (due to better use of notches).

Though we have considered here a simple polygon,
sometimes there may be more than one subcircuits whose
guard zonal regions are somewhere so closed that they
overlap. This compels us to compute a common guard zonal
region for them removing the intersectional regions.

It may so happen that sometimes a small polygon that has
been placed outside a large polygon with a sufficiently big
notch in it. In this case, the small polygon could be
accommodated inside the notch of the large polygonal
boundary. Often this sort of placement of a small polygon
inside a notch of some other polygon may provide a compact
design and subsequently, space is also saved. Thus, resizing is
an important problem in VLSI layout design as well as in
embedded system design, while accommodating the (groups
of) circuit components on a chip floor, and this problem
motivates us to compute a guard zone of a simple polygon.

The guard zone problem finds another important
application in the automatic monitoring of metal cutting tools.
Here a metal sheet is given and the problem is to cut a
polygonal region of some specified shape from the sheet. The
cutter is like a ballpoint pen whose tip is a small ball of radius

, and it is monitored by a software program. If the holes
inside the notch also need to be cut, our algorithm can easily
be tailored to satisfy that requirement too. The Minkowski
sum is an essential tool for computing the free configuration
space of translating a polygonal robot [1]. It also finds
application in the polygon containment problem and in
computing the buffer zone in geographical information
systems [4], to name only a few.

8 CONCLUSION

In the case of VLSI physical design automation, given a set of
isothetic non-overlapping polygonal regions and a common
resizing parameter δ, the objective is to compute another set of
closed regions resizing each polygon by an amount of δ. If two
or more polygons are closed enough so that their guard zones
overlap, indicating the violation of least separation constraint
among them, then the polygons have to move relatively to
overcome this breach. Resizing of electrical circuits is an
important problem in VLSI layout design as well as in
embedded system design, while accommodating the (groups
of) circuit components on a chip floor; this motivates us to
compute a guard zone of a simple polygon. In this paper, we
have developed a sequential algorithm for computing the
same that uses the concepts of analytical and coordinate
geometry to detect overlapped region(s) within the guard
zone (if any) and accordingly exclude that region to report the
resulting outer guard zone. Our algorithm can also be
modified to compute the regions of width r (as guard zonal
distance) outside the polygon, and inside the polygon as well
(if necessary), which may find several applications in practice.
This work can also be extended for computing a guard zone of
a three-dimensional simple solid object as a problem of
probable future work.

REFERENCES

[1] Bajaj C. and M.-S. Kim, Generation of Configuration Space Obstacles: The
Case of a Moving Algebraic Curves, Algorithmica, vol. 4, no. 2, pp. 157-172,
1989.

[2] Chazelle B., Triangulating a Simple Polygon in Linear Time, Discrete
Computational Geometry, vol. 6, pp. 485-524, 1991.

[3] Harnandez-Barrera A., Computing the Minkowski Sum of Monotone
Polygons, IEICE Trans. on Information Systems, vol. E80-D, no. 2, pp. 218-
222, 1996.

[4] Heywood I., S. Cornelius, and S. Carver, An Introduction to Geographical
Information Systems, Addison Wesley Longman, New York, 1998.

[5] Mehera R., A. Chakraborty, P. Datta, and R. K. Pal, A 2D Guard Zone
Computation Algorithm for Reassignment of Subcircuits to Minimize the
Overall Chip Area, Proc. of the International Doctoral Symposium on
Applied Computation and Security Systems (ACSS-2014), Apr. 18-20, 2014.

[6] Mehera R., S. Chatterjee, and R. K. Pal, A Time-Optimal Algorithm for
Guard Zone Problem, Proc. of 22nd IEEE Region 10 International
Conference on Intelligent Information Communication Technologies for
Better Human Life (IEEE TENCON 2007), CD: Session: ThCP-P.2
(Computing) (Four pages), Taipei, Taiwan, 2007.

[7] Mehera R., S. Chatterjee, and R. K. Pal, Yet another Linear Time Algorithm
for Guard Zone Problem. The Icfai Journal of Computer Sciences, vol. II, no.
3, pp. 14-23, Jul. 2008.

[8] Mehera R., A. Chakraborty, P. Datta, and R. K. Pal, A Comprehensive
Approach towards Guard Zone Computation Detecting and Excluding the
Overlapped Regions, Accepted for the Proc. of the International Conference

(c)

G2
G1

G2

G1

(a)

(b)

G2
G1

(e)

G2

G1

(d)

G2

G1

287

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 6, Issue 5, May-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

on Electrical and Computer Engineering (ICECE-2014), Dec. 20-22, 2014,
Dhaka, Bangladesh.

[9] Nandy S. C., B. B. Bhattacharya, and A. Hernandez-Barrera, Safety Zone
Problem, Journal of Algorithms, vol. 37, pp. 538-569, 2000.

[10] Sherwani N. A., Algorithms for VLSI Physical Design Automation. Kluwer
Academic, Boston, 1993.

288

IJSER

http://www.ijser.org/

	1 Introduction
	2 Literature Survey
	3 Problem Formulation
	4 Algorithm Development
	4.1 Phase I of the Algorithm
	4.2 Phase II of the Algorithm

	5 Experimental Results
	6 Complexity Analysis
	7 Applications
	8 Conclusion
	References

