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Abstract— The guard zone computation problem claims utmost importance in VLSI layout design, where the circuit components (or the 

functional units/modules or groups/blocks of different sub-circuits) that may be viewed as a set of polygonal regions on a two-dimensional 

plane, are not supposed to be placed much closer to each other in order to avoid electrical (parasitic) effects among them. Each (group of) 

circuit component(s) Ci is associated with a parameter i such that a minimum clearance zone of width i is to be maintained around Ci. 

Beyond this, it has huge significance in the field of robotic motion planning, geographical information system, automatic monitoring of metal 

cutting tools, and design of embedded systems. If the guard zonal regions overlap, we have to remove the overlapped regions in order to 

compute the resultant outer guard zone (sometimes inner guard zones are also an issue to be considered). In this paper, we have 

developed an algorithm to compute the guard zone of a simple polygon as well as to exclude the overlapped regions among the guard 

zonal segments (if any) in O(n log n) time, where n is the number of vertices of the given simple polygon. 

Index Terms— Simple polygon, Safety zone, Notch, Convex hull, False hull edge, Convolution, Minkowski sum.   

——————————      —————————— 

1 INTRODUCTION                                                                     

D guard zone computation problem undoubtedly occupies 
a majority of interest in the field of VLSI physical design 
automation and design of embedded systems, as resizing is 

an important problem in VLSI layout design as well as in 
embedded system design. If two or more subcircuits are close 
enough, it may result in parasitic effect which disrupts the 
performance of the circuit. Thus, with respect to resizing 
problems in VLSI, this is the motivation of defining the safety 
zone of a polygon [6]. The width of the safety zone depends 
on the polygon, i.e. the type of the circuit present therein and 
the free space required to perform all the tasks safely. In this 
context, it is also essential to detect overlapping (if any) 
among the guard zonal regions and accordingly remove them 
to obtain resultant guard zone. Through this procedure we 
may also find a hole (if any) in the guard zone and some times 
those holes may be used to place a subcircuit in order to utilize 
the chip area more densely and efficiently. In this paper we 
develop an algorithm to compute guard zone of a 2D simple 
polygon including the detection and exclusion of the 
overlapped regions (if any).  

To solve the guard zone computation problem, one of the 
reputed methods is Minkowski sum [3]; that can be used to 
draw a parallel line with respect to a given polygonal edge. 
Essentially, Minkowski sum between a line and a point with 
same x- and y-coordinates gives a line parallel to the given 

one. But the question arises is whether the parallel line is 
inside or outside the polygon. Here the definition of 
Minkowski sum [3] can be extended as below. 

If A and B are subsets of Rn, and   R, then A+B = {x+y | x 
 A, y  B}, A–B = {x–y | x  A, y  B}, and A {x | x  A}. 

Note that A+A does not equal 2A, and A–A does not equal 
‘zero’ in any sense. 

Another method may be used to compute guard zone of a 
polygon. The convolution [1] is used to solve the guard zone 
problem. The convolution between a polygon and a circle of 
radius r gives us the desired solution. But the circles need to 
be drawn in every possible points of the polygon and 
consequently the time complexity of the algorithm increases. 
Minkowski sum and convolution theories find their vast 
applications in Mathematics, Computational geometry, 
resizing of VLSI circuit components and/or recently in 
embedded systems, and in many problems in many other 
subjects. 

2 LITERATURE SURVEY 

In the context of guard zone computation, several different 
algorithms have been proposed so far. The most discussed tool 
for guard zone computation is the Minkowski Sum [4]. Apart 
from Minkowski sum, convolution can also be used as a tool 
for guard zone computation. Essentially, Minkowski sum 
between a line (as polygonal segment) and a point 
(perpendicularly at a distance r apart) with the same x- and y-
coordinates gives a line parallel to the given one. But the 
question arises is whether the parallel line is inside or outside 
the polygon. We have already defined Minkowski sum in the 
introduction of this paper. 

The convolution between a polygon and a circle of radius r 
may give us the desired solution of a guard zone. But the 
circles need to be drawn in every possible point of the polygon 
and thus the time complexity of the algorithm increases. The 
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complexity of computing Minkowski sum of two arbitrary 
simple polygons P and Q is O(m2n2) [4], where m and n are the 
number of vertices of these two polygons. In particular, if one 
of the two polygons is convex, the complexity of Minkowski 
sum reduces to O(mn). In [6], numerous results are proposed 
on the Minkowski sum problem when one of the polygons is 
monotone. 

In this context, a linear time algorithm is devised for 
finding the boundary of minimum area guard zone of an 
arbitrarily shaped simple polygon in [9]. This algorithm uses 
the idea of Chazelle’s linear time triangulation algorithm and 
requires space complexity of O(n) as well [2], where n is the 
number of vertices of the polygon. After having the 
triangulation step, this algorithm uses only dynamic linear 
and binary tree data structures. Again, a time-optimal 
sequential algorithm for computing a boundary of guard zone 
has been developed in [5-7] that uses simple analytical and 
coordinate geometric concepts. The algorithm can easily be 
modified to compute the regions of width r outside the 
polygon as guard zone, and also inside the polygon. 

3 PROBLEM FORMULATION 

In this section, we formulate and develop a comprehensive 
algorithm to compute guard zone of a simple polygon while 
detecting and excluding the overlapped regions (if any) of the 
guard zone. A simple polygon may contain both convex and 
concave vertices in it. We define these vertices as follows: A 
vertex v of a polygon P is defined as convex (concave), if the 
angle between its associated edges inside the polygon, i.e. the 
internal angle at vertex v, is less than or equal to (greater than) 
180º. In Fig. 1, angles at vertices v4, v5, and v6 are concave 
whereas angles at vertices v1, v2, v3, v7, v8, and v9 are convex. To 
know whether an angle , inside the polygon, is either convex 
or concave at vertex v, we do a constant time computation of 
determining the value (of ) at vertex v. For a given set of 
three or more connected vertices that form a simple polygon, 
the orientation of the resulting polygon is directly related to 
the sign of the angle at any vertex of the convex hull of the 
polygon. For example, to determine the type of angle formed 
between edges a = (XA, XB) and b = (XB, XC) with coordinates 
XA (x1, y1), XB (x2, y2), and XC (x3, y3), the following equation is 
being used that takes constant time for finding out the angle 
whether it is convex or concave: 

det(O) = (XBXA)( YCYA)  (XCXA)( YBYA). 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: A notch is formed inside (or below) the false hull edge formed by 
vertices v2 and v8, and a guard zone is obtained for this notch as shown by 
dotted lines and circular arcs outside of the polygon. 

 
 
 
 
 
 
 
 
 
 

Fig. 2: (a) Different probable overlapping of guard zone of two convex 
regions. (b) Probable overlapping of guard zone of one convex region with 
a straight line segment. (c) A polygon consisting of a number of convex 
(e.g., B, C, D, and F) and concave (e.g., A, E, and G) vertices whose 
guard zonal regions are probable to overlap. 

Now, if all the n external angles of the polygon are convex, 
the guard zone is computed only with the help of n straight 
line segments and n circular arcs in linear time [6, 7]. Problems 
may arise in computing guard zone for the portions of 
polygon P with concave external angles. In this context, we 
introduce the concept of notch. A notch is a polygonal region 
outside a polygon that is starting and terminating between 
two consecutive convex vertices of the polygon that are not 
adjacent. As our objective is to compute the intersection points 
and exclude the overlapped regions (if any), we first compute 
the guard zone G (without excluding overlapped portions) of 
the given simple polygon P in linear time [6, 7]. The difficulty 
arises while excluding the part(s) of G that overlap(s).  

As a guard zone consists of only line segments and circular 
arcs, intersection may occur between two line segments, one 
line segment and a circular arc or two circular arcs. In Figs. 
2(a), 2(b) and 2(c), different kinds of probable overlapping 
sections have been depicted. To find out all the intersection 
points and exclude the overlapped region(s) (in order to get 
the desired guard zone only, including holes, if any, as parts 
of G), we may execute an O(n2) algorithm for each pair of such 
segments, among all straight line segments and circular arcs 
resulting and ensuring inefficiency with respect to cost. In the 
next section, we present a number of algorithms which solves 
the guard zone computation problem bounding its cost in time 
to O(n log n). 

4 ALGORITHM DEVELOPMENT 

To detect and exclude the overlapped guard zonal regions we 
use the line sweep algorithm among the guard zonal segments 
that in turn may reduce the overall complexity of guard zone 
computation algorithm to O(n log n), instead of O(n2) [6]. As 
the guard zone is a set of line segments and circular arcs and 
line sweep algorithm can only be applied on a set of line 
segments, we cannot solve our problem directly through line 
sweep algorithm. Hence, our incline to modify the guard zone 
in such a way that we may use line sweep algorithm, which is 
an efficient tool for intersection checking.  

The computation procedure will be trickier, if we somehow 
detect the probable intersection region or the components 
which are most prone to overlap and afterwards we detect the 
final intersecting guard zonal component pair(s). Also it may 
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happen that originally there were no intersections but the 
algorithm reports the intersection points and works only with 
those intersection information and finally reports the 
computed guard zone. The algorithm works in two phases. In 
Phase I, it detects the prone guard zonal components to be 
intersected and in Phase II, it computes the guard zone 
eliminating overlapped portions, if any. 

The main objective of this algorithm is to reduce the search 
space so that there will be a speed up in the application of the 
line sweep algorithm. We notice that for each of the circular 
arcs, its two tangents, which are actually the line segments of 
the guard zone attached to that circular arc, can be extended. 
Thus, they meet at a point. If we apply this at each such 
circular arc we get s number of points for s number of circular 
arcs. As a result the guard zone will become a polygon which 
is not necessarily a simple one. We call it the extended or 
overestimated guard zone. By converting a guard zone into an 
extended or overestimated guard zone we now do not have to 
consider the circular arc portions for repetitive bisection. 

For an example, the vertex p of the overestimated polygon 
as shown in Fig. 3, which is formed by extending two 
neighbouring line segments of the circular guard zonal region 
of the convex vertex v of the original polygon. Here the 
circular arc vv is the guard zonal region of the convex vertex 
v. Now the neighbours of this circular arc are uv and vw. 
They are extended and meet at p, which is considered to be a 
convex vertex of the overestimated polygon. Thus, all the 
circular arcs of the guard zone are now replaced by 
corresponding convex vertices in the extended polygon. Now 
if the extended guard zone, which is actually a polygon, 
becomes also a simple polygon it means that there is no 
intersection among the guard zonal components and there is 
no need of Phase II of the algorithm. 

Here the line sweep algorithm is applied where the input is 
a set of line segments (original guard zonal line segments and 
the derived line segments replacing the circular arcs) 
associated with their starting and ending coordinates as event 
points. The starting point, ending point, and point of 
intersection (if any) are the three types of event points. As 
usual all the event points are sorted and the sweep line is 
traversed through the sorted list of event points. At each event 
point, insertion (at start event point), deletion (at end event 
point), and update (at intersection point) of neighbouring 
operations are performed during the sweep line traversal. 
Here the data structures used are of the highest importance to 
accomplish the task in O(n log n) time. 

This algorithm maintains two binary search trees, one for 
storing the event points and another for the line segments to 
keep track of their neighbouring information. All the three 
operations are performed on the query tree. As an intersection 
occurs only between the neighbours, this data structure 
reduces the search space for intersection checking to the set of 
neighbours of a line segment. Furthermore, it is proved that 
line sweep algorithm reports all the intersection points. After 
getting all these intersection points, we traverse the original 
guard zone and depending on the intersection points we 
exclude the intersected or overlapped region(s), and report the 
outer and inner guard zone [5], accordingly. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Extending the guard zonal line segments (uv and wv) associated 
with a circular arc (vv) to obtain the overestimated guard zonal region 
that meets at p. 

When applying the line sweep algorithm to a polygon, we 
need to remember that each pair of consecutive edges share 
one event point (starting or ending) and thus the algorithm 
needs a little bit modification as it takes the set of line 
segments those do not share their start or end point. At the 
beginning of the algorithm, the sweep line is at the maximum 
or minimum event point; again that point is the starting point 
of two line segments and hence arises the ambiguity in 
selecting the root of the query tree as both the line segments 
are claimers to be the root. We remove this confusion in the 
following way; let us consider L1 and L2 are such line 
segments competing to be the root. 

First we compare the end points of the line segments. If 
their y-coordinate values are different, the line segment 
having larger y-coordinate value (say L1) is selected as the 
root and another line segment (i.e. L2) has been selected as its 
left (right) child if the x-coordinate value of L2 is less (greater) 
than that of L1. On the other hand, if their y-coordinate values 
are same, the line segment having smaller y-coordinate value 
(say L1) is selected as the root and another line segment (i.e. 
L2) has been selected as its right child. 

Another modification of line sweep algorithm lies in the 
fact that we have to deal with a closed polygon and the query 
tree is empty only at the starting and at the termination of the 
algorithm, whereas in the traditional line sweep algorithm to 
have an empty query tree is not a termination condition, 
because it may happen that at the end point of a line segment 
where there is no other line segment whose start point is 
above that very point and the end point is below it. Except 
these two above cited modifications, the algorithm proceeds in 
the way of traditional line sweep algorithm identifying all the 
intersection points, if exists. 

Now in Phase II, the algorithm deals with the original 
guard zonal regions, not with the extended guard zones and 
with the regions which are detected to be the probable 
intersection regions by the first phase of the algorithm. As has 
been discussed earlier, these regions are subdivided into line 
segments (if there is any circular arc in these parts of the 
polygon) and the line sweep algorithm is further applied on 
these line segments only. At the end of the second phase, we 
get the original intersections and depending on these points, 
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the algorithm reports the outer guard zone as well as the inner 
guard zonal loop, if any. Two phases of the algorithm will be 
discussed next with the help of an example.  

Let us consider a simple polygon S whose vertices are 
stored in anticlockwise manner as a, b, c, d, e, f, g, h, i, j, k, l, 
where a, b, c, d, e, f, g, k are convex and h, i, j are concave 
vertices (Fig. 4(a)). After obtaining the guard zone of this 
polygon, the algorithm is applied to detect and exclude the 
overlapping portions. 

4.1 Phase I of the Algorithm 

As the pair of neighbouring line segments of each circular arc 
(guard zone of a convex vertex) is extended, that meet at a 
point which is again a convex vertex of the overestimated 
polygon. Now let us consider a overestimated polygon X as 
shown in Fig. 5(b), whose edges are labeled as AB (2), BC (3), 
CD (4), DE (5), EF (6), FG (7), GH (8), HI (9), IJ (10), JK (11), KL 
(12), LA (1). 

After sorting all the event points in the descending y-value, 
we get the event list as L, E, A, F, K, J, D, G, H, I, B, C. At the 
beginning, this array only contains all the start and end points 
in their sorted sequence (according to their y-coordinates), but 
subsequently checking of intersection introduces more event 
points as the intersection points are also considered as the 
event points. All the event points are handled by the query 
tree (T). 

Now the sweep line is adjusted, parallel to x-axis at the 
maximum y-coordinate, i.e. at L. It is the starting point of two 
line segments 1 and 12. The x-coordinate of the end of 1 is less 
than the x-coordinate of the end of 12. So, in T, 1 is left 
neighbour of 12. Accordingly, both the trees are shown in Figs. 
5(a) and 5(b) conveying this relationship. Though at a glance it 
seems to be ambiguous to choose the tree structure between 
these two, this does not introduce any indefiniteness in our 
algorithm. We can always choose the root by comparing the y-
coordinates of the two line segments whose start points are 
same. The line segment, whose end point is of greater y-
coordinate between the two, is selected as the root. Now the 
other line segment is inserted into the tree as right child or left 
child of the root depending on the neighbouring relationship 
of this segment with the root. Here 1 will be the root node and 
12 will be its right child as the y-coordinate of A which is the 
end point of segment 1, is higher than that of K, i.e. the y-
coordinate of A is greater than that of K, which is the end 
point of segment 12. So the tree of Fig. 5(b) is chosen. Now 1 
and 12 are consecutive polygonal edges, there is no need of 
checking intersection between them. L is deleted from the 
event list. Hence, the content of the event queue becomes E, A, 
F, K, J, D, G, H, I, B, C. 

Next event point is E. It is the starting point of 6 and 5; 
hence, these two event points are to be inserted into the query 
tree. As E is a point with higher x-coordinate value than L, 6 
and 5 are inserted in the right subtree of 12. Here we compare 
the end points of 6 and 5 to decide which the direct neighbour 
of 12 is. As the end point of 6 possesses lower x-coordinate 
than that of the end point of 5, 6 is inserted first as the right 
child of 12 as shown in Fig. 5(c). As we like to make the tree 
height balanced always, rotations are applied as needed and 

obtain the tree as shown in Fig. 5(d). Now, checking for 
intersections between 6 and 12 is performed. It results in an 
intersection point Q. The point is inserted in the intersection 
list with information Q (6,12) maintaining its order. Again, the 
intersection point Q is inserted into the event queue 
maintaining proper y-value sequence. Now, 5 becomes the 
right neighbour of 6. Accordingly, the tree is shown in Fig. 
5(e). E is deleted from the event queue and the content of 
event queue becomes A, Q, F, K, J, D, G, H, I, B, C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: (a) A simple (dotted) polygon P. (b) The extended guard zone X of 
the polygon P (X is also a polygon drawn by solid lines). 

Now the sweep line moves towards the next event point A, 
which is the end point of 1 and start point of 2. As 1 is a leaf 
node in T and the remaining tree does not become height 
imbalanced even after deleting node A, it is deleted without 
any additional modification in the tree. As 1 has been deleted 
and A is of less x-coordinate than the point at which 12 cuts 
the sweep line, 2 is inserted being the left neighbour of 12. 
Accordingly, the tree is shown in Fig. 5(f). A is deleted from 
the event list. The event list is now Q, F, K, J, D, G, H, I, B, C. 
Now the event point Q is to be handled. As it is an intersection 
point, the neighbouring information are updated in T. this is 
performed by interchanging 12 and 6. Again their set of 
neighbours has also been interchanged; the tree is shown in 
Fig. 5(g). Q is deleted from the event list. The event list is now 
F, K, J, D, G, H, I, B, C. The next event pont is F, which is the 
end point of 6 as well as the start point of 7. Now, 6 is deleted 
and 7 is inserted at the place of 6 in the query tree. Hence, 7 is 
the neighbour of 2 and 12 and intersection checking is 
performed among those. As no intersection is reported the 
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intersection list remains the same and F is deleted from the 
event queue. The resulting query tree structure has been 
shown in Fig. 5(h). Thus, during the algorithm, the sweep line 
traverses all the points in event list. In the meantime it handles 
the query tree T. In Fig. 6, all the intermediate trees are shown. 
As we are applying line sweep algorithm on a bounded 
region, i.e. a polygon, the query cannot be empty until all the 
event points are accessed. Hence, the algorithm of Phase I is 
over when the query tree becomes empty. The status of event 
queue and the intersection list at each event point have been 
shown through Table I. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 5:  (a) 1 and 12 have been inserted, 12 being right child of 1. (b) 1 and 
12 have been inserted, 12 being left child of 1. (c) 6 has been inserted 
being right child of 12 and the tree gets imbalanced. (d) The unbalanced 
tree in (c) is made height balanced. (e) 5 has been inserted as the right 
child of 6. (f) 1 is deleted and 2 is inserted. (g) The positions of 12 and 6 
have been interchanged. (h) 6 is deleted and 7 is inserted. (i) 12 is deleted 
and 11 is inserted. (j) The positions of 7 and 11 have been interchanged. 
(j) 11 is deleted and 10 is inserted. (l) The positions of 7 and 10 have been 
interchanged. (m) 5 is deleted and 4 is inserted. (n) 7 is deleted and 8 is 
inserted. (o) The positions of 8 and 10 have been interchanged. (p) 8 is 
deleted and 9 is inserted. (q) 9 and 10 are deleted resulting 4 to be the 
root. (r) 9 and 10 are deleted (from (p)) resulting 2 to be the root and this 
tree is selected as the x-coordinate of the end point of 2 is less than that of 
4, though both of them have same y-coordinates. (s) 2 is deleted and 3 is 
inserted at the position of 2. 

4.2 Phase II of the Algorithm 

At the end of Phase I, we have obtained all the probable 
intersection points for the overestimated guard zonal regions. 
Each intersection point can be on the actual guard zonal 
component or on the extended portion of the guard zonal line 
segments. So, an intersection point thus obtained may be 
original or fake depending on whether it is on the original 
guard zonal segment (or not), and thus, a further checking is 
required to identify the real ones.  

Now, there are three types of intersections: (a) circular arc-
circular arc, (b) line segment-circular arc, and (c) line segment-
line segment. We denote each intersection point as a triple 
intersection point, (two ends of one of the intersecting 
components), (two ends of the other intersecting component). 
Thus, one intersecting pair resulted in the first phase identifies 
a set of consecutive original guard zonal segments, i.e. arc-
line segment-arc, or arc-line segment, or line segment 
depending upon the guard zonal segment that has been 
extended in Phase I. Irrespective of the cases occurred, we 
have to check a constant number of guard zonal segments 
whether there is any intersection. Now, during the guard zone 
computation phase for each of the polygonal edge and 
vertices, we get the equation of both the line segment and 
circular arc along with their end points. Hence, the checking 
between any two of these segments is a constant time 
operation using simple coordinate geometry. For an example, 
if we want to check whether a line segment and a circular arc 
are intersecting, we only need to know the (coordinate) 
equations of the line segment and the circle. Subsequently, if 
there is any intersection point, we have to check whether the 
point is on the circular arc or on the remaining portion of the 
circle [5].  

In our example, for the intersection point Y, as shown in 
Fig. 6, the guard zonal information is Y, arc(G1, G2), (I, J). 
Hence, the guard zonal component list is updated by 
replacing arc(G1, G2) by arc(G1, Y), arc(Y, G2) and IJ by IY, 
YJ. The next intersection point is X (in Fig. 7), which is 
between 8 and 10 (in Fig. 4(b)). 8 joins one convex point G and 
one concave point H. So we consider the circular arc 
corresponding to G and the line segment joining the circular 
arc and the concave point H. Again 10 joins two concave 
points J and I; so we consider only the line segment joining the 
concave points J and I. Thus, we have one circular arc and two 
line segments for a probable intersecting region. 

 
 
 
 
 
 
 
 
 
 
 
 
         
 
                      

 
Fig. 6: Original guard zone of a simple polygon consisting of line segments 
and circular arcs. 

After the second phase, we find X as X, (G2, H), (I, J). Now 
at the time of updating the guard zonal component list, as IJ 
has already been updated, we need to check whether the point 
X lies on IY or YJ. Accordingly, the guard zonal information 
regarding that component is updated in the list. Here for point 
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X we update IY as IX and XY, as point X is on IY. 
 

TABLE I  

THE TABLE OF EVENT POINTS, THE CONTENTS OF THE EVENT QUEUE, AND INTERSECTION LIST DURING THE EXECUTION OF THE ALGORITHM 

FOR THE EXAMPLE POLYGON SHOWN IN FIG. 4 

 

Event 

points 

Starting of 

line 

segment(s) 

Ending of 

line 

segment(s) 

Intersecting 

line 

segments 

Event Queue Intersection List 

L 1, 12 - - E, A, F, K, J, D, G, H, I, B, C - 

E 5, 6 - - A, Q, F, K, J, D, G, H, I, B, C Q (6,12) 

A 2 1 - Q, F, K, J, D, G, H, I, B, C Q (6,12) 

Q - - 6, 12 F, K, J, D, G, H, I, B, C Q (6,12) 

F 7 6 - K, J, D, G, H, I, B, C Q (6,12) 

K 11 12 - P, J, D, G, H, I, B, C Q (6,12), P (7,11) 

P - - 7, 11 J, D, G, H, I, B, C Q (6,12), P (7,11) 

J 10 11 - D, R, G, H, I, B, C Q (6,12), P (7,11), R (7,10) 

D 6 5 - R, G, H, I, B, C Q (6,12), P (7,11), R (7,10) 

R - - 7, 10 G, H, I, B, C Q (6,12), P (7,11), R (7,10) 

G 8 7 - S, H, I, B, C Q (6,12), P (7,11), R (7,10), S (7,8) 

S - - 7, 8 H, I, B, C Q (6,12), P (7,11), R (7,10), S (7,8) 

H 9 8 - I, B, C Q (6,12), P (7,11), R (7,10), S (7,8) 

I - 10, 9 - B, C Q (6,12), P (7,11), R (7,10), S (7,8) 

B 3 2 - C Q (6,12), P (7,11), R (7,10), S (7,8) 

C - 3, 4 - - Q (6,12), P (7,11), R (7,10), S (7,8) 

 
At the end of Phase II, when all the guard zonal 

information is obtained, the algorithm reports the computed 
guard zone excluding the overlapped portions. Thus, the 
output should be in the form of list of guard zonal line 
segments and guard zonal circular segments after eliminating 
intersecting region(s). Now, here is an important observation; 
inside the notch area, the overlapping among the components 
may create two types of guard zonal loops: outer guard zone 
and inner guard zone. For the former case, it is a free space 
and not a part of the polygon. Hence, the detection of inner 
guard zonal loop is of utmost importance for further 
utilization of this free space, in terms of placement of a new 
subcircuit. However, both the loops are free from overlapping. 
For the example given, as we traverse the guard zonal 
components in counterclockwise manner, we can have each 
component in their consecutive order. According to the list, as 
we traverse the guard zone, we encounter the intersection 
points one after another, as it appears in the list. Once we 
encounter an intersection point, we change our path and 
continue the traversal along the other line segment in 
anticlockwise manner. Thus, this is how when we reach at the 
starting point of the traversal, our job is done. This process 
consumes O(n) time if the number of vertices in the polygon is 

n. As per our example, the said traversal results the outer 
guard zone as follows: arc(A1, A2),  A2B1,  arc(B1, B2), B2C1, 
arc(C1, C2), C2D1, arc(D1, D2), D2E1, arc(E1, E2), E2F1, arc(F1, 
F2), F2Y, YJ, JK1, arc(K1, K2), K2L1, arc(L1, L2), L2A1.  

In this case, when we arrive at Y after traversing segment 
F2Y, we check for the line segment that intersects at Y other 
than F1G2. Here it is JI and the point from Y we find J in the 
anticlockwise direction. Thus, we move to J and report the 
segment YJ as the next traversed line segment in the desired 
guard zone excluding the overlapped regions. Sometimes 
there may be an overlapping at the notch region and there is a 
sufficient space in that notch to place a subcircuit to utilize the 
area more efficiently. In this case, if we follow the above 
procedure we compromise the possibility to find the region 
which is in the shape of a loop inside the notch. In that case we 
follow the procedure discussed below.  

While traversing the guard zone, when we are at one of the 
intersection points, we traverse in anticlockwise direction 
enlisting the line segments and circular arc segments 
including the intersection points as well. Thus, the list starting 
from one intersection point and circle back to the same point 
needs to be eliminated from the guard zone (except the points 
of intersection) as it includes the inner guard zone along with 
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the intersection region. Then we get the resultant list for the 
guard zone. The inner guard zone can also be specified by 
sublist of the list mentioned above. If there is one such cycle 
starting from one intersection point and ending at the same 
point without having any other intersection point within it, it 
is an inner guard zone.  

From our example polygon in Fig. 5, we have two 
intersection triples Y, (arc(F1, F2), arc(G1, G2)), (I, J) and X, 
(arc(G1, G2), H), (I, J). Starting from arc(F1, F2) we get the list: 
arc(F1, F2), F2Y, YG1, arc(G1, G2), G2X, XH, HI, IX, XY, and YJ 
as it covers all the end points of this triple and it is updated in 
the original guard zonal list. But here is no inner guard zone 
starting from Y and ending at Y as in this cycle there is another 
intersection point X. Before updating the original list we 
remove the sublist starting from Y and ending at the line 
segment joining two intersection points. Thus here we remove 
this portion: YG1, arc(G1, G2), G2X, XH, HI, IX, XY. Starting 
from arc(G1, G2) we get the list: arc(G1, G2), G2X, XH, HI, IX, 
XY, YJ. So the inner guard zone is XH, HI, IX, and the outer 
guard zone is: arc(A1, A2), A2B1, arc(B1, B2), B2C1, arc(C1, 
C2), C2D1, arc(D1, D2), D2E1, arc(E1, E2), E2F1, arc(F1, F2), 
F2Y, YJ, JK1, arc(K1, K2), K2L1, arc(L1, L2), L2A1. 

Thus, the list starting from one intersection point and 
ending at the same point is to be eliminated from the guard 
zone as it includes the inner guard zone and intersection 
region. The inner guard zone can also be specified by sublist 
of the above said list. If there is one such cycle starting from 
one intersection point and ending at the same point without 
having any other intersection point in between, it is an inner 
guard zone. 

 After finding the list of intersecting line segments and arcs, 
the information is updated in the original guard zonal list. 
There is no inner guard zone starting from one intersection 
point (Y) and returning back to that very intersection point 
(Y), if in this cycle there is no other intersection point X, where 
X  Y; otherwise, there is an inner guard zone that needs to be 
reported separately. If there is any inner guard zone, before 
updating the original list the sublist starting from Y and 
ending at the line segment joining two intersection points X 
and Y is removed. The remaining list is reported as the outer 
guard zone. Thus, we obtain the outer guard zone as well as 
the holes in the guard zone (if any) in O(n log n) time. 

TABLE II 

A STUDY ON COMPARISON OF DETECTING INTERSECTION(S) 

Issues 

considered 

Naive 

Algorithm 
Two-Phase Algorithm 

Segments to 

be 

considered 

for checking 

intersections 

12 (line 

segments) 

+ 9 

(circular 

arcs) = 21 

Phase I: 12 (overestimated guard 

zonal line segments) 

Phase II: For four intersection 

points found in the Phase I, there 

are (3+3), (3+2), (3+1), and (2+1) 

guard zonal segments for original 

intersection checking. 

Computation 

required 

(12+9)2 = 

441 

Phase I: 12 log212  

Phase II:  (3×3) + (3×2) + (3×1) + 

(2×1) = 20 

Time 

complexity 
O(n2) 

O(12 (log2 12) + cI) 

= O(n log n + cI), as c  is a 

constant and I is the number of 

intersection points detected in 

Phase I. 

5 EXPERIMENTAL RESULTS 

In this section, we cite a relative study based on the polygon 
shown in Fig. 4(b), in terms of time and detecting 
intersections, between the naive algorithm where the 
intersections are identified by checking each pair of segments 
and our proposed two-phase method. Here we denote the 
number of intersections resulted in the first phase as I and for 
each probable region of intersection, we have to consider a 
constant number of guard zonal segments (linear or circular) 
for original intersection checking, each of which takes constant 
time using simple coordinate geometry. Note that the 
assumed polygon in Fig. 4(b) containing 12 edges and 12 
vertices out of which nine vertices are convex and the 
comparison has been shown in Table II.  

6 COMPLEXITY ANALYSIS 

If the number of edges in the original polygon is n, then the 
number of edges by removing each of the circular arcs, i.e. to 
derive the extended polygon, is also O(n) as we require a 
constant number of operations for each of the convex vertices. 
The next step is to apply the line sweep algorithm taking the 
set of all line segments, original as well as derived segments 
after preprocessing. The algorithm starts by creating an event 
queue by sorting the starting and ending points of the line 
segments, which takes O(n log n) time using any standard 
sorting algorithm. Initializing the query tree takes constant 
time. The query tree handling consists of three operations: 
insertion, deletion, and interchange of node positions, each of 
such operations takes O(log n) time. 

Now m  n+I, where I is the number of intersection points 
obtained in the first phase of the algorithm, i.e. these are the 
probable intersection points. Hence, the complexity of the line 
sweep algorithm is O(m log n) [8]. In the second phase, we 
deal with the segments of the original guard zone that are 
associated with the intersection points in the first phase. In 
each of the cases, we have to consider only a constant number 
of guard zonal segments associated with each line segment 
pair, which have been reported to be intersecting in the Phase 
I of the algorithm. Thus, total number of checking required in 
the second phase is cI, where c is a constant bounded within 9. 
The intersection points obtained in this time are the actual 
ones. Hence, the time complexity of the algorithm in two 
phases is O(m log n + cI), i.e. the devised algorithm is output 
sensitive. 

7 APPLICATIONS 

Now in brief we like to point out the importance and 
motivation of the problem as follows. Suppose, there are two 
(approximated) guard zones G1 and G2 that are computed for 
two 2D simple polygons P1 and P2, respectively, those are not 
shown in Fig. 7(a). Moreover, these two polygons are to be 
placed adjacent in realizing a larger VLSI circuit, where the 
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two polygons of guard zones must not overlap. Thus, there 
might have several 2D arrangement (or placement) of these 
two guard zones as shown in Figs. 7(b)-(e), out of which the 
placement in Fig. 7(d) takes the most reduced space (or area). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig.7. (a) Two (approximated) guard zones G1 and G2 are assumed as 
computed for two 2D simple polygons P1 and P2 (that are not shown in 
these figures), respectively. (b)-(e) Different 2D arrangement (or 
placement) of these two guard zones out of which (d) consumes the least 
amount of 2D space (due to better use of notches). 

Though we have considered here a simple polygon, 
sometimes there may be more than one subcircuits whose 
guard zonal regions are somewhere so closed that they 
overlap. This compels us to compute a common guard zonal 
region for them removing the intersectional regions. 

It may so happen that sometimes a small polygon that has 
been placed outside a large polygon with a sufficiently big 
notch in it. In this case, the small polygon could be 
accommodated inside the notch of the large polygonal 
boundary. Often this sort of placement of a small polygon 
inside a notch of some other polygon may provide a compact 
design and subsequently, space is also saved. Thus, resizing is 
an important problem in VLSI layout design as well as in 
embedded system design, while accommodating the (groups 
of) circuit components on a chip floor, and this problem 
motivates us to compute a guard zone of a simple polygon. 

The guard zone problem finds another important 
application in the automatic monitoring of metal cutting tools. 
Here a metal sheet is given and the problem is to cut a 
polygonal region of some specified shape from the sheet. The 
cutter is like a ballpoint pen whose tip is a small ball of radius 

, and it is monitored by a software program. If the holes 
inside the notch also need to be cut, our algorithm can easily 
be tailored to satisfy that requirement too. The Minkowski 
sum is an essential tool for computing the free configuration 
space of translating a polygonal robot [1]. It also finds 
application in the polygon containment problem and in 
computing the buffer zone in geographical information 
systems [4], to name only a few. 

8 CONCLUSION 

In the case of VLSI physical design automation, given a set of 
isothetic non-overlapping polygonal regions and a common 
resizing parameter δ, the objective is to compute another set of 
closed regions resizing each polygon by an amount of δ. If two 
or more polygons are closed enough so that their guard zones 
overlap, indicating the violation of least separation constraint 
among them, then the polygons have to move relatively to 
overcome this breach. Resizing of electrical circuits is an 
important problem in VLSI layout design as well as in 
embedded system design, while accommodating the (groups 
of) circuit components on a chip floor; this motivates us to 
compute a guard zone of a simple polygon. In this paper, we 
have developed a sequential algorithm for computing the 
same that uses the concepts of analytical and coordinate 
geometry to detect overlapped region(s) within the guard 
zone (if any) and accordingly exclude that region to report the 
resulting outer guard zone. Our algorithm can also be 
modified to compute the regions of width r (as guard zonal 
distance) outside the polygon, and inside the polygon as well 
(if necessary), which may find several applications in practice. 
This work can also be extended for computing a guard zone of 
a three-dimensional simple solid object as a problem of 
probable future work. 
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